Intranasal immunogenicity and adjuvanticity of site-directed mutant derivatives of cholera toxin.
نویسندگان
چکیده
Genetically modified derivatives of cholera toxin (CT), harboring a single amino acid substitution in and around the NAD binding cleft of the A subunit, were isolated following site-directed mutagenesis of the ctxA gene. Two mutants of CT, designated CTS106 (with a proline-to-serine change at position 106) and CTK63 (with a serine-to-lysine change at position 63), were found to have substantially reduced ADP-ribosyltransferase activity and toxicity; CTK63 was completely nontoxic in all assays, whereas CTS106 was 10(4) times less toxic than wild-type CT. The mucosal adjuvanticity and immunogenicity of derivatives of CT were assessed by intranasal immunization of mice, with either ovalbumin or fragment C of tetanus toxin as a bystander antigen. Mice immunized with wild-type CT produced both local (immunoglobulin A in mucosal washes) and systemic immune responses to both CT and bystander antigens. CTS106 showed good local and systemic responses to bystander proteins and to itself. Interestingly, mice immunized with the nontoxic derivative of CT, CTK63, generated weak immune responses to the bystander antigens which were similar to those achieved when CT B subunit was used as an adjuvant. In parallel experiments, an equivalent nontoxic mutant of the Escherichia coli heat-labile enterotoxin, LTK63 (with a serine-to-lysine change at position 63), was tested (9). In contrast to CTK63, LTK63 was found to be more immunogenic and a better intranasal adjuvant than recombinant heat-labile enterotoxin B subunit or CTK63. This information, together with data on immunoglobulin subclass responses, suggests that although highly homologous, CT and heat-labile enterotoxin should not be considered biologically identical in terms of their ability to act as intranasal adjuvants.
منابع مشابه
Adjuvanticity of the cholera toxin A1-based gene fusion protein, CTA1-DD, is critically dependent on the ADP-ribosyltransferase and Ig-binding activity.
The ADP-ribosylating enterotoxins, cholera toxin (CT) and Escherichia coli heat-labile toxin, are among the most powerful immunogens and adjuvants yet described. An innate problem, however, is their strong toxic effects, largely due to their promiscuous binding to all nucleated cells via their B subunits. Notwithstanding this, their exceptional immunomodulating ability is attracting increasing ...
متن کاملMutants in the ADP-ribosyltransferase Cleft of Cholera Toxin Lack Diarrheagenicity but Retain Adjuvanticity
Cholera toxin (CT), the most commonly used mucosal adjuvant in experimental animals, is unsuitable for humans because of potent diarrhea-inducing properties. We have constructed two CT-A subunit mutants, e.g., serine-->phenylalanine at position 61 (S61F), and glutamic acid-->lysine at 112 (E112K) by site-directed mutagenesis. Neither mutant CT (mCT), in contrast to native CT (nCT), induced aden...
متن کاملIntranasal Delivery of Cholera Toxin Induces Th17-Dominated T-Cell Response to Bystander Antigens
Cholera toxin (CT) is a potent vaccine adjuvant, which promotes mucosal immunity to protein antigen given by nasal route. It has been suggested that CT promotes T helper type 2 (Th2) response and suppresses Th1 response. We here report the induction of Th17-dominated responses in mice by intranasal delivery of CT. This dramatic Th17-driving effect of CT, which was dependent on the B subunit, wa...
متن کاملMucosal adjuvant properties of the Shigella invasin complex.
The Shigella invasin complex (Invaplex) is an effective mucosal vaccine capable of protecting against Shigella challenge in animal models. The major antigenic constituents of Invaplex are the Ipa proteins and lipopolysaccharide. The cell-binding capacity of the Ipa proteins prompted the investigation into the adjuvanticity of Invaplex. Using ovalbumin (OVA) as a model antigen, intranasal immuni...
متن کاملA Single Point Mutation within the Coding Sequence of Cholera Toxin B Subunit Will Increase Its Expression Yield
Background: Cholera toxin B subunit (CTB) has been extensively considered as an immunogenic and adjuvant protein, but its yield of expression is not satisfactory in many studies. The aim of this study was to compare the expression of native and mutant recombinant CTB (rCTB) in pQE vector. Methods: ctxB fragment from Vibrio cholerae O1 ATCC14035 containing the substitution of mutant ctxB for ami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 65 7 شماره
صفحات -
تاریخ انتشار 1997